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Abstract
In this second of four papers on the eponymous topic, pointwise convergence
of a ‘discrete’ state function to a ‘continuum’ state function is shown to imply
the algebraic criterion for convergence that was introduced in the prequel. As
examples (and as a prerequisite for the sequels), the normal approximation
theorem and the convergence of the Kravchuk functions to the Hermite–
Gaussians are expressed in terms of the algebraic notion of convergence.

PACS numbers: 0530, 0220, 0330, 0365F

1. Motive

The eventual aim of this paper, and its three companions [5–7] is to characterize, in terms of
limits, a link between two algebraic topics, the theory of Wigner distributions, and the theory
of the angular momentum algebra su(2). That the two topics are indeed closely related was
established long ago by Stratonovich [23], and consolidated by Várilly–Gracia-Bondı́a [24].
A strong indication that the connection can be expressed using limits appeared in Atakishiyev
et al [1].

Via the Wigner distribution, or more precisely, via the Weyl–Wigner correspondence, an
infinite-dimensional state space is related to a Euclidian phase space. The correspondence
is covariant with respect to the group of affine canonical transforms, which is generated by
the symplectic transforms and the Heisenberg translates. Littlejohn [15] reviewed, in lucid
detail, the algebraic aspects of this covariance. Stratonovich, adapting this idea, showed how
a finite-dimensional state space may be related to a spherical phase space. The underlying
symmetries here are expressed by the group SU(2). Atakishiyev et al observed that the three
canonical bases of the irreducible representations of SU(2) (the three sets of eigenvectors of
the standard generators of su(2)) may be regarded as a basis of position vectors, a basis of
momentum vectors, and a basis of harmonic oscillator energy eigenstates.

In the fourth paper of this series, some affine canonical transforms will be realized as
limits of finite-dimensional actions of SU(2). In this paper, and the other two, suitable notions
of limits are defined and examined. Consider a ‘continuum’ Hilbert space L∞ and ‘discrete’
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Hilbert spaces Ln indexed by some variable parametern. For example, L∞ might beL2(Rm) for
some positive integer m, while Ln might be L2(Z), or some finite-dimensional inner product
space. How might objects associated with L∞—such as vectors, operators, and quantum
systems—be realized as limits of analogous objects associated with Ln? One answer has been
supplied by Digernes et al [9]. We shall give a different answer, one that is more concerned
with preservation of algebraic structure. After all, if our link between the two topics mentioned
above is to reflect the rich algebraic features of both, then preservation of algebraic structure
must be a requirement.

The third paper concerns convergence of operators and convergence of quantum systems,
and explains how, by transcription of differential operators to difference operators, some very
simple continuum systems—the circular rotor, the one-dimensional box, and the harmonic
oscillator, the fractional Fourier transform—are limits of finite-dimensional systems. All of
these examples are well known, and the ‘limits’ can be recognized using sheer common sense,
but a rigorous treatment is helpful preliminary for the more sophisticated application indicted
above.

The purpose of this paper is to show that convergence of vectors, as defined generally in the
first paper, is in accord with the heuristic pointwise criterion for convergence that is already in
frequent use, as in, for instance Atakishiyev–Wolf [3], Atakishiyev et al [1], and some works
cited (in this connection) in [5, section 1]. Theorem 5.1, below, asserts that the Kravchuk
functions converge (in our sense) to the Hermite–Gaussians (the harmonic oscillator energy
eigenstates). This will be needed to prove [6, theorem 4.1], which asserts that the Kravchuk
function fractional Fourier transform converges (in our sense) to the continuum fractional
Fourier transform. In connection with (heuristic versions of) these two results, Atakishiyev–
Wolf [3, section 5] wrote

‘A mathematically precise formulation of this limit in terms of Hilbert spaces should
be made, but we leave this rather technical matter for further research’.

Our language and notation is taken from quantum mechanics, because this is the area in
which most of our source material resides. We point out, however, that a ‘quantum system’ is
a dynamical system on a Hilbert space; various one-parameter groups of signal transforms are
just as much ‘quantum systems’ as any quantum mechanical system. The theory of Wigner
distributions is of no less significance to signal analysis and optics than it is to quantum physics.
See, for instance, the books by Mecklenbräuker–Hlawatsch [16] and Ozaktas et al [19]. The
problem of discretizing phase space is of much concern in signal processing, in part because
numerical data and numerical calculations are, by nature, discrete.

Let us note (in roughly ascending order of possible physical interest) five general motives
for studying correspondences between ‘continuum’ and ‘discrete’ quantum systems:

(1) Numerical calculations pertaining to continuum models are often carried out using digital
machines. It would be desirable to have a discrete theory that reflects the nature of
the calculations. It would also be desirable to have a systematic way of relating the
scenario of the calculations and the scenario of the continuum models. Leonhardt [14]
has examined discrete Wigner distributions in connection with quantum state tomography.
Discrete Wigner distributions and related discrete transforms are of topical interest in signal
processing. See, for instance, the works by Richman et al [22] and Pei et al [20]. The
senses in which these and similar discrete constructions converge to the continuum model,
for large samples, is not mathematically clear.

(2) Finite-dimensional linear algebra is—in theoretical foundation, if not always in practical
application—almost trivial in comparison with operator theory for infinite-dimensional
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Hilbert spaces. As a theoretical technique, it may be desirable to have a way in which
subtle problems concerning infinite-dimensional representations may be reduced to trite
problems concerning finite-dimensional representations.

(3) Notwithstanding the premise of (2), the finite-dimensional scenario may sometimes be
richer than the continuum scenario. For instance, difference equations often have more
families of solutions than the corresponding differential equations. There is the possibility
of being able to work in the discrete scenario, deriving results using objects that have
no continuum analogues, and then passing to the continuum scenario by taking limits.
Hakioğlu [10, 11] and Hakioğlu–Tependelenlioğlu [12] have approached the quantum
phase problem in this way, constructing action and angle operators on finite-dimensional
state spaces.

(4) Atakishiyev et al [1] proposed a physically realizable optical waveguide system with
only finitely many pure states. As part of their analysis of the system, they examined,
as a limiting case, a continuum system with infinitely many pure states. Any physically
realizable optical system can have only finite resolution and finite extent, and hence (in
some imprecise sense) can have only finitely many observable states. Yet, when studying
such a system, one may wish to use an infinite-state system to investigate the limiting
behaviour.

(5) The Weyl–Wigner correspondence, and the representation theory of SU(2) are of
considerable interest in fundamental mathematics and mathematical physics. Although
connections between the two theories are already recognized, a mathematically precise
correspondence would be, presumably, a useful theoretical tool.

2. Convergence must preserve inner products

Our ‘continuum’ and ‘discrete’ spaces are to be interfaced to each other by means of an
inductive resolution. The term was defined generally in [5, section 2]. In this paper, we
shall confine our attention to ‘sample-point’ inductive resolutions, as in [5, examples 2.A,
2.B, 2.C]. Let us reintroduce the idea in a more physically compelling manner. As a
‘Gedankenexperiment’, let us suppose that some function ψ : R → C is playing a role
in a mathematical model of a physical system. It is known that ψ is continuous and suitably
well behaved, furthermore, approximate measurements ofψ have been taken at sample points.
For convenience of discussion, let us suppose that, for some positive integer n, and for all
integers X with −n/2 < X � n/2, we have a measurement F(X) ≈ ψ(X/

√
n). How might

we relate the known function F to the unknown function ψ?
One answer, which goes back at least as far as Eudoxus (and almost as far back as

kindergarten) is to treat the integer n as a variable with no upper bound, and to demand
that, for sufficiently large n, the errors of measurement are arbitrarily small. That is to say,
we might demand that, given any x ∈ R, and any sequence of integers (Xn)n satisfying
limn→∞ Xn/

√
n = x, then

ψ(x) = lim
n→∞�n(Xn).

When this condition holds, we say that �n pointwise converges to ψ .
Let us now suppose that the ‘physical system’ is a quantum system (by which we mean a

dynamical system on a Hilbert space, for instance: a quantum mechanical system, or a one-
parameter group of signal transforms, or a one-parameter group of symmetries of some other
quantum system). The structure of a Hilbert space is its linear space structure, together with
its inner product. Whatever definition we eventually adopt for convergence of vectors, it must
preserve the structure of the Hilbert spaces. Pointwise convergence obviously preserves the
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linear space structure, but preservation of the inner product is another matter. Consider now
two continuous square-integrable functionsψ, φ : R → C. Let (�n)n and (�n)n, respectively,
be sequences of approximations pointwise converging to ψ and φ. The inner products are

〈φ|ψ〉 =
∫

R

φ(x)ψ(x) dx and 〈�n|�n〉 =
∑
X

�n(X)�n(X)

the sum being indexed by the integers −n/2 < X � n/2. Writing ψn(X) = n−1/4�n(X), and
φn(X) = n−1/4�n(X) similarly, the condition

〈φ|ψ〉 = lim
n→∞〈φn|ψn〉

might be desirable. Certainly, the condition does hold if ψ and φ are suitably nice and if the
errors of measurement tend to zero sufficiently fast, indeed, the sum 〈φn|ψn〉 can, in this case,
be regarded as a ‘Riemann sum’. Alas, the condition, as it stands, makes little sense as a
criterion for convergence, because there are two arbitrary sequences involved. But let us say
that the sequence (ψn)n converges to ψ provided the equation for 〈φ|ψ〉 holds whenever there
are no errors in the measurements of φ. In other words, writing

resn(φ)(X) := n−1/4φ(X/
√
n)

then the sequence (ψn)n converges to ψ if and only if

〈φ|ψ〉 = lim
n→∞〈resn(φ)|ψn〉

for all suitably well-behaved φ. We might as well take ‘suitably well behaved’ to mean that φ
belongs to the Schwarz space S(R) (the space of rapidly decreasing functions R → C).

One attractive feature of the definition of convergence is that it can be applied for an
arbitrary vectorψ ∈ L2(R), irrespective of whether or not the values ofψ at the sample points
are defined.

Even in the case where ψ ∈ S(R), our criteria for convergence and for pointwise
convergence are logically independent. For instance, if �(X) = 0 for |X| � n2/3 and
�n(X) = exp(X2) for |X| > n2/3, then �n converges pointwise to 0, but 〈resn(φ)|ψn〉 → ∞
for φ(x) = exp(−x2), hence ψn does not converge. (The author thanks a referee for that
example.) On the other hand, if ψn(0) = 1 and ψn(X) = 0 for all non-zero X, then ψn

converges to 0 but �n does not converge pointwise. When [8] and [4] were written, the author
expected that any ‘pointwise’ criterion for convergence of vectors would have to include some
condition on the speed of convergence of sample-point values. For this reason, the somewhat
obscure term induction was used in place of convergence. However, the following special
case of theorem 3.1 shows that pointwise convergence, together with a harmless caveat on the
norms ‖ψn‖, does imply convergence.

Corollary 2.1. In the notation above, suppose thatψ∞ ∈ S(R). Suppose that the norms ‖ψn‖
are bounded, and that �n converges pointwise to ψ∞. Then ψn converges to ψ∞.

In applications to quantum mechanics, the requirement that the norms ‖ψn‖ are bounded
is indeed a harmless, in fact, the given state vectors ψn are often normalized.

Warning: given (ψn)n and (χn)n converging to vectorsψ and θ inL2(R), the inner product
〈ψn|θn〉 need not converge to 〈ψ |θ〉.

3. Pointwise convergence implies convergence

Let us review the inductive resolutions of the kind specified in [5, example 2.A] . The
‘continuum’ Hilbert space is the space L∞ := L2(Rr ), where r is a positive integer. We
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fix an infinite set N of positive integers. For each n ∈ N , let Xn be a set, let σn be a function
Xn → R

r , let ν(n) be a positive real number, and suppose that, for every bounded convex
subset U of R

r , the preimage Xn(U) := σ−1
n (U) is finite, and the sequence (|Xn(U)|/ν(n)2)n

converges to the measure |U | of U . (The elements Xn ∈ Xn are to be interpreted as indices
of sample points σn(Xn) ∈ R

r . Our hypothesis ensures that the sample points σn(Xn) tend
towards being uniformly distributed throughout R

r .) The ‘discrete’ spaces are the spaces
Ln := L2(Xn) consisting of the square-summable functions Xn → C. Since R

r is the union of
countably many bounded convex subsets, each set Xn is countable, hence each Hilbert space
L2(Xn) is separable. The inner product of two vectors ψn, χn ∈ Ln is

〈ψn|χn〉 =
∑
X∈Xn

ψn(X)χn(X).

Let S denote the Schwarz subspace S(Rr ) of L∞. We define the restriction map resn to be the
linear map S → Ln such that, for φ ∈ S, the value of resn(φ) at an element X ∈ Xn is

resn(φ)(X) = φ(σn(X))/ν(n).

Given φ, θ ∈ S and a convex subset V of R
r (not necessarily bounded) then, as the limit

of a ‘Riemann sum’,∫
V

φ(x)θ(x) dx = lim
n∈N

∑
X

resn(φ)(X) · resn(θ)(X)

where the index X of the sum runs over the preimage Xn(V ) = σ−1
n (V ). In particular,

〈φ|θ〉 = lim
n∈N

〈resn(φ)|resn(θ)〉.
In the terminology of [5], the sequence of Hilbert spaces (Ln)n and the sequence of linear maps
(resn)n together comprise an inductive resolution of L∞.

Given a vector ψ∞ ∈ L∞ and, for sufficiently large n ∈ N , vectors ψn ∈ Ln, we call ψ∞
a limit of the sequence (ψn)n provided the norms ‖ψn‖ are bounded, and

〈φ|ψ∞〉 = lim
n∈N

〈resn(φ)|ψn〉
for all φ ∈ S. Existence and uniqueness properties of limits are established in [5]. When
ψ∞ is the limit of (ψn)n, we say that (ψn)n converges to ψ∞, and we write ψ∞ = limn∈N ψn.
To reiterate: the vectors ψn need only be given for sufficiently large n (that is, for all except
finitely many n).

Theorem 3.1. Using the notation above, let ψ∞ ∈ S, and for sufficiently large n ∈ N , let
ψn ∈ Ln. Suppose that the norms ‖ψn‖ are bounded, and furthermore, for all x ∈ R

r ,
and all sequences (Xn)n with Xn ∈ Xn and x = limn∈N σn(Xn), we have ψ∞(x) =
limn∈N ν(n)ψn(Xn). Then ψ∞ = limn∈N ψn.

Proof. We are to show that 〈φ|ψ∞〉 = limninN 〈resn(φ)|ψn〉 for all φ ∈ S. We may assume that
ψ∞ and φ are normalized. Whenever we consider a fixed element n ∈ N , we shall assume that
n is sufficiently large for all our purposes. Let ε > 0. Choose a closed ball B ⊆ R

r centred at
the origin and such that∫

Rr−B
|φ(x)|2 dx〈ε2〉

∫
Rr−B

|ψ∞(x)|2 dx.

Since n is large, Xn(B)|/ν(n)2 < 2|B|. We claim that

|ψ∞(σn(X))− ν(n)ψn(X)| < ε
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for all X ∈ Xn(B). Supposing otherwise, then there exists an infinite subset N ′ of N such
that, for all n ∈ N ′, there exists some Yn ∈ Xn(B) satisfying

|ψ∞(σ (Yn))− ν(n)ψn(Yn)| � ε.

By the compactness of B, there exists an infinite subset N ′′ of N ′ such that the sequence
(σn(Yn))n has a limit x in B. We can extend the sequence (Yn)n∈N ′ to a sequence (Xn)n∈N still
with limit x. This contradicts the hypothesis on the sequence (ψn)n. The claim is established.

It follows that∑
X∈Xn(B)

|resn(ψ∞)(X)− ψn(X)|2 � ε2|Xn(B)|/ν(n)2 < 2|B|ε2.

Noting that limn∈N ‖resn(φ)|2 = ‖φ‖2 = 1, we have∣∣∣∣ ∑
X∈Xn(B)

resn(φ)(X)
(
resn(ψ∞)(X)− ψn(X)

)∣∣∣∣ < ε
√

2|B|.

by the Cauchy–Schwarz inequality for series. Meanwhile,

lim
n∈N

∣∣∣∣ ∑
X∈Xn(Rr−B)

resn(φ)(X).resn(ψ∞)(X)
∣∣∣∣ =

∣∣∣∣
∫

Rr−B
φ(x)ψ∞(x) dx

∣∣∣∣ < ε2

by the Cauchy–Schwarz inequality for integrals. Similarly,

lim
n∈N

∣∣∣∣ ∑
X∈Xn(Rr−B)

resn(φ)(X).ψn(X)

∣∣∣∣ < ε‖ψn‖.

The latest three inequalities yield

|〈resn(φ)|resn(ψ∞)− ψn〉| < ε
(

1 +
√

2|B| + ‖ψn‖
)
.

Since the norms ‖ψn‖ are bounded,

〈φ|ψ∞〉 = lim
n∈N

〈resn(φ)|resn(ψ∞)〉 = lim
n∈N

〈resn(φ)|ψn〉.
�

The inductive resolution in the particular case where L∞ = L2(R) and Xn = Z ∩
(−n/2, n/2] and ν(n) = (n/2π)1/4 was considered in [8] and [4]. Under the further
assumption that n2/n1 is a square for all n1 � n2 ∈ N , it was shown in [4, theorem 2.5]
that, for each j ∈ N, the j th Harper function σn,j ∈ Ln converges to the j th Hermite–
Gaussian hj ∈ L∞. (The significance of this result is that, as a consequence, the Harper
function FRFT on Ln converges to the usual FRFT on L∞.) No explicit formula for σn,j is
known, nor any recurrence relation with variable n and fixed j , so it is to be expected that
proofs of the convergence hj = limn∈N σn,j must be indirect. Nevertheless, a large part of the
argument in [4] is concerned with establishing lemmas on rates of convergence. Theorem 3.1
tells us that rate of convergence is not important. It seems likely that theorem 3.1 could provide
a simpler argument, and one that dispenses with any special hypothesis on the infinite set of
positive integers N .

4. The normal approximation theorem

The earliest limit distribution theorem, and arguably the most important still, is the normal
approximation theorem, proved by de Moivre [17] using formulae developed by Stirling.
It asserts that the normal distribution is the continuum limit of the (symmetrically weighted)
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binomial distribution. In this section, we show how this paradigm of a correspondence between
a ‘continuum’ scenario and a ‘discrete’ scenario can be expressed in our sense of convergence
of vectors.

A normally distributed random variable x ∈ R has associated probability density
function P such that

P(x) = exp(−x2)/
√
π.

Now consider a positive integer n, write n = 2$ + 1, and let

Xn = {−$, 1 − $, . . . , $− 1, $} = {Z − $ : Z ∈ Z ∩ [0, n− 1]}.
A binomially distributed random variable X ∈ Xm has associated probability weight
function Pn such that

Pn(X) = 1

22$

(
2$
l + X

)
.

The normal approximation theorem, as in Révész [21, theorem 2.8] for instance, relates P
and Pn thus: given elements Xn ∈ Xn such that Xn = o($2/3) as n increases, then

Pn(Xn) = exp(−(1 + o(1))X2
n/$)/

√
π$.

Consider a quantum system with state space L∞ = L2(R). Let us assume that the state
of the system is expressed by a normalized continuous function ψ : R → C. By the home
variable, we mean the observable associated with the operator x̂ such that x̂ψ(x) = xψ(x).
The probability density for observing the home variable to be in the locality of some given
value x is |ψ(x)|2. Suppose now that the home variable, as a random variable, is normally
distributed. Then |ψ(x)|2 = P(x). The solutions to this equation are unique only up to an
phase factor (continuous in x). Applying some foresight, let us impose the condition that the
values ofψ are real and non-negative. Theψ must be equal to the Gaussian function h0, which
is defined by

h0(x) = π−1/4 exp(−x2/2).

Now consider a quantum system with state space Ln = L2(Xn). Since Xn is finite, Ln

is the finite-dimensional inner product space consisting of all the functions Xn → C. Let
ψn ∈ Ln be a normalized vector expressing the state of the system. Suppose that the home
variable is binomially distributed. Then |ψn(X)|2 = Pn(X). Applying foresight again, we
impose the condition that the values of ψn are real and non-negative. Then ψn must be equal
to the degree zero Kravchuk function h0,n, which is defined by

h0,n(m) = 1

2$

√(
2$
l + m

)
.

Taking N to be the set of all positive integers, and putting ν(n) := $1/4, we have specified
a particular inductive resolution (Ln)n and (resn)n of L∞. The normal approximation theorem
implies that

h0(x) = lim
n
$−1/4h0,n(Xn)

when x = limn Xn/
√
$. Noting that each ‖h0,n‖ = 1, we deduce, from theorem 3.1:

Proposition 4.1 (Normal approximation theorem). We have h0 = limn h0,n.
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Despite initial appearance, this Hilbert space version is, mathematically and physically,
a quite ‘natural’ rendition of the normal approximation theorem; the degree zero Kravchuk
function is a ‘natural’ discrete analogue and approximation to the Gaussian function. This
opinion is supported by the more general result, theorem 5.1 below, but the clincher is the
interpretation of the Kravchuk functions in Atakishiyev–Wolf [3] and Atakishiyev et al [1].
See also [6] and [7]. We also mention that Hakioğlu–Tependelenlioğlu [12] have shown how
binomial wavepackets (degree zero Kravchuk state functions) can spread just as Gaussian
wavepackets do.

5. Convergence of the Kravchuk functions to the Hermite–Gaussians

Recall that, for a natural number s, the Hermite polynomial Hs of degree s may be defined as
the polynomial function R → C such that H0(x) = 1 and H1(x) = 2x and

Hs+1(x)− 2xHs(x) + 2sHs−1(x) = 0.

The Hermite–Gaussian function hs of degree s is defined to be the rapidly decreasing function
R → C such that

hs(x) = Hs(x)h0(x)
√
s!2s = Hs(x) exp(−x2/2)/

√
s!2s

√
π.

It is well known that the Hermite–Gaussians comprise a complete orthonormal set in L∞,
and that they are the energy eigenstates for a simple harmonic oscillator. They are also the
eigenvectors of the continuum fractional Fourier transform.

For a given positive integer n = 2$ + 1, let s be a natural number confined to the range
0 � s � 2$. The (symmetrically weighted) Kravchuk polynomial Ks,d of degree s for
dimension n may be defined to be the polynomial function C → C such that

Ks,n(z) = lim
c→−2$

F (−z,−s, c, 2)

where F is the hypergeometric function. Explicitly,

Ks,n(z) =
s∑

k=0

(−2)k
z(z− 1) · · · (z− k + 1)

k!

(
s

k

) (
2$
j

)−1

.

The (symmetrically weighted) Kravchuk function hs,d of degree s for dimension n may be
defined to be the real-valued function such that

hs,n(w) = (−1)s

2$
Ks,n($ + w)

√(
2$
s

)
(2$)!

.($ + w + 1).($− w + 1)

where −$ − 1 < w < $ + 1. (Shortly, it will become evident that the notation here does
not conflict with our earlier definition of the degree zero Kravchuk function h0,n.) For an
account of the theory of Kravchuk polynomials and Kravchuk functions, we refer to Nikiforov–
Uvarov [18] and Vilenkin–Klimyk [25]. A summary of some of their properties may be found
in Atakishiyev–Wolf [3].

We prefer to understand the Kravchuk polynomials Ks,n as having values defined only at
integers Z in the range 0 � Z � 2$. (As such, they are, of course, no longer polynomial
functions.) Thence

Ks,n(Z) =
min(s,Z)∑
k=0

(−2)k
(
Z

k

) (
s

k

) (
2$
k

)−1

.



Continuum quantum systems as limits of discrete quantum systems: II. State functions 4681

Alternatively, the Ks,n can be defined by

K$+j,n($ + m) =
(

2$
$ + j

)−1 max($+m,$+j)∑
k=min(0,m+j)

(−1)k
(
$ + m
k

) (
$−m

$ + j − k

)

where m, j ∈ Xn. The equivalence of these two explicit formulae is not difficult to derive
using equations in Vilenkin–Klimyk [25, section 6.3.1] or Wawrzyńczyk [26, section 8.2] ;
for the time being, we leave the derivation as an exercise, but we shall give further details
of the manipulations in [7]. By [25, equation 6.8.1.12], the Kravchuk polynomials are also
determined by the condition that K0,n(Z) = 1 and K1,n(Z) = 2(Z − $)/(2$− 1) and

(2$− s)Ks+1,n(Z) + 2(Z − $)Ks,n(Z) + sKs−1,n(Z) = 0.

Also, we prefer to regard the Kravchuk functions hs,n as functions Xn → C. Our defining
formula for the Kravchuk functions is now

hs,n(m) = (−1)s

2$

√(
2$
s

) (
2$
m

)
Ks,n($ + m) = (−1)s

√(
2$
s

)
Ks,n($ + m)h0,n(m)

for m ∈ Xn. (It is now evident that our two definitions of h0,n coincide.) By [25,
equation 6.8.1.9], the Kravchuk function comprise an orthonormal basis {hs,n : 0 � s � 2$}
of Ln.

Actually, for the purposes of this paper and its two sequels, the functions Ks,n and hs,n—
restricted to finite domains as above—ought to defined in terms of the Wigner d-numbers,
without any mention of their continuum extensions. After all, Ks,n and hs,n arise in our
‘discrete’ scenario, and as such, they are entirely ‘discrete’ entities. Their characterization in
terms of d-numbers may be found in Nikiforov–Uvarov [18, equation 12.65]. In [7], we shall
reintroduce Ks,n and hs,n from this representation theoretic perspective, and thence we shall
derive their recurrence relations, orthonormality properties, and other fundamental properties.
(Let us point out that, when deriving properties of the continuum Kravchuk polynomials
and functions, appeals to general properties of the hypergeometric function F demand delicate
limiting arguments, sinceF has singularities when its third argument is a non-positive integer.)

It is well known that the Kravchuk functions (suitably scaled) pointwise converge to the
Hermite–Gaussians; the result is noted in Atakishiev–Suslov [2, section 1.2], Atakishiyev–
Wolf [3, equation A9], Koekoek–Swarttouw [13, equation 2.21], and Nikiforov–Uvarov [18,
equation 12.60] . Nikiforov and Uvarov also indicate a method of proof. Since the argument
is brief, let us present it in some detail.

The above recurrence relation for the Kravchuk polynomials can be rewritten as√
(2$− s)(s + 1)hs+1,n(X)− 2mhs,n(X) +

√
s(2$− s + 1)hs−1,n(X) = 0.

Writing x = limn∈N Xn with each Xn ∈ Xn and |x√$−Xn| � 1, then√
2(s + 1)hs+1,n(Xn)− 2xhs,n(Xn) +

√
2shs−1,n(Xn) = O(1/

√
$)

where, for fixed b > 0 and variable x ∈ [−b, b], the expression O(1/
√
$) depends on b but

not on x and not on the sequence (Xn)n. Meanwhile, from the above recurrence relation for
the Hermite polynomials√

2(s + 1)hs+1(x)− 2xhs(x) +
√

2shs−1(x) = 0.

By the normal approximation theorem, followed by an inductive argument wherein the latest
two recurrence relations are compared,

hs(x) = $1/4hs,n(Xn) + O($−1/4).

Perforce, we recover the pointwise convergence

hs(x) = lim
n∈N

$1/4hs,n(Xn).
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Theorem 5.1. For every natural number s, we have hs = limn∈N hs,n.

Proof. Each ‖hs,n‖ = 1, so the assertion follows from theorem 4.1 together with the pointwise
convergence already established. �

In [6], consolidating results in Atakishiyev–Wolf [3], we shall use theorem 5.1 to show
that the Kravchuk function FRFT converges to the usual continuum FRFT. In [7], pursuing
ideas in Atakishiyev et al [1], theorem 5.1 will be needed to elucidate the way in which the
three canonical generators of su(2) are related to energy, momentum and position.
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[10] Hakioğlu T 1998 Finite-dimensional Schwinger basis, deformed symmetries, Wigner function and an algebraic

approach to quantum phase J. Phys. A: Math. Gen. 31 6975–94
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